Implementation and Evaluation of Model-based Health Assessment for Spacecraft Autonomy

2023 IEEE Aerospace Conference

2023 IEEE Aerospace Conference

Agenda

- Introduction to Model-based Health Assessment
- The physical system and its model
- Test campaign and results
- Conclusions

Model-based Health Assessment

- Health assessment == health monitoring => fault management
- Model-based Off-Nominal State Identification and Detection (MONSID)
- Constraint suspension technique for fault identification
- Potential to detect unanticipated faults and off-nominal behavior

MONSID Heritage

- Based on SBIR Phase I with AFRL (2013)
- MONSID C++ developed through SBIR I,II,II-x and III's with NASA (2015 2020)
 - JPL Test rover mobility system uncovered firmware and FSW problems and detected real faults
 - ROS integration in state of the art 6-DOF Caltech CAST facility
 - Developed MONSID Toolkit visualization web app
 - Applied MONSID to propellant management systems (KSC)
- ASTERIA CubeSat extended mission (2020)
 - MONSID model of XACT ACS unit validated with flight data
 - Integrated with ASTERIA FSW (Fprime)
- Lunar Flashlight CubeSat I&T tool (2021-present)
 - Reused MONSID model of XACT ACS
- AFRL Phase II (2019-2021)
 - MONSID integration with cFS on 3-DOF ACS test bed
- NASA ROSES ColdTech award (2022-present)
 - 2-year subcontract to JPL to support robotic arm modeling and auto-recalibration of models

Physical System

AFRL Autonomy Testbed called BONSAI

BONSAI Implementation - I

Platform Characterization & Model development

Platform Data

 Gimbal angle commands, Hall, Encoder, IMU, MOCAP (attitude) available

 Analogs and inner motor control loop data not available

- Modeled Components:
 - Gimbals
 - Gimbal Hall sensor (rate)
 - Encoder sensor (angle)
 - Rotor
 - IMU
 - MOCAP

BONSAI Implementation - 2

Platform Characterization & Model development

- Data Rates & Quality
 - Attitude Estimation runs at 100 Hz
 - 50 Hz (IMU) and 10 Hz (Controller) sampled and held
 - Hall and MOCAP data very noisy

- Data down sampled to 10 Hz
 - Reduced sample-hold effects
- Modeled simplified gimbal motion to mitigate effects of non-linearities
- Filtered MOCAP data prior to use in model

MONSID Model

- Intended to identify faults in individual CMG components
- Possible to distinguish among faults in gimbals, encoders, gimbal Halls, and rotors.
- Possible to distinguish IMU faults from MOCAP faults

Injected Faults

Safety First!

Fault	Injection Method
Gimbal fail to zero	Zero out gimbal rates, gimbal angles remain constant
Rotor fail to zero	Remove command to rotor loop only so rotor naturally spins down (non-zero commands still seen by MONSIDand ACS software)
Encoder fail to zero	Zero out encoder signal
IMU bias drift (z-axis)	Add bias acceleration to IMU signal on z-axis
IMU fail to zero (single axis)	Zero out IMU signal on specified axis (x or y only)

- Single faults
- Double faults occurring simultaneously
 - Rotor and IMU
 - Rotor and encoder
 - Rotor and gimbal Hall

2023 IEEE Aerospace Conference

Ó

10

Test Campaign

- Designed to represent realistic spacecraft maneuvers
- 5 different slew profiles used in nominal and fault scenarios
 - Per-axis slews
 - Slews between 2 fixed attitudes
 - Spiral scan composed of body y and z-axis slews
 - Constant and sinusoidal tracking slews about z-axis
- 3-9 minutes in duration to avoid saturating the gimbals
- Planned 42 total runs consisting of:
 - Nominal
 - Single injected faults
 - Double injected faults

.ast Update:	6:02:11 PM	Engine Started:	5:41:29	PPM (i)		
Component	Health Status	Suspension Rank	\checkmark	Sensor	Health Status	Suspension Rank
G1 Encoder	Healthy	0		rotor1_hall	Healthy	0
G1 Hall	Healthy	1.235294		rotor2_hall	Healthy	0
G2 Encoder	Healthy	0		rotor3_hall	Healthy	0
G2 Hall	Healthy	0		rotor4_hall	Healthy	0
G3 Encoder	Healthy	0		rotor5_hall	Healthy	0
G3 Hall	Healthy	1.647059	\checkmark	rotor6_hall	Healthy	0
G4 Encoder	Healthy	0				
G4 Hall	Healthy	0				
G5 Encoder	Healthy	0				
Go Hall	Healthy	1.941176				
	Healthy	1 059924				
Goriali	Healthy	0				
Gimbal 2	Healthy	1 29/118				
Gimbal 3	Healthy	1.254110				
Gimbal 4	Healthy	1 117647				
Gimbal 5	Healthy	0				
Gimbal 6	Healthy	0				
	Faulty	3				
MOCAP	Healthy	1.029412				
Rotor 1	Healthy	0				
Rotor 2	Healthy	0				
Rotor 3	Healthy	0				
Rotor 4	Healthy	0				
Rotor 5	Healthy	0				
Rotor 6	Healthy	0				
	₽		<u> </u>	Н	ealth Status Changes Over Time	
	₽	9 Faulty				
	−	te Current				
9-0-0		Suspect				
• • • •		Healthy				• •
		Unidentified —				

release approval # AFRI -2023-1187

11

Interesting Cases

Unanticipated, previously unknown behaviors

- Gimbal Hall sensor anomalies
 - During quiescent periods, sensor data sometimes latched to a constant value just outside the deadband
 - During slow movement, sensors sometimes latched to a value inside the deadband
 - MONSID detected this behavior and correctly attributed to gimbal Hall sensors
- Unresponsive gimbals -> actual hardware fault!
 - Individual gimbals would simply stop responding to commands
 - Occurred singly and in pairs (double fault condition)
 - MONSID correctly identified the unresponsive gimbals and verified that encoders and Hall sensors were healthy
 - Operators never before noticed this!

Performance Metrics

- False positive (FP): incorrect detection of a fault when the system is operating nominally
- True diagnosis (TD): correct diagnosis of true faults
 - Similar to true positive but includes true detection and correct identification of the faulty items
- Mis-diagnosis (MD): an incorrect diagnosis of true faults
 - True faulty items were not in the list of identified faulty items

Results Summary

10 nominal runs:

- FP rates: 1.4% to 0.01%
- Most FP due to gimbal Hall sensor anomalies

11 injected fault runs:

- FP rates < 1%</p>
- TD rates 95% to 100%, one outlier with 89%
- MD rates 5% to 0%, one outlier with 11%
- 13 runs had unanticipated, concurrent real gimbal faults
 - 10 intended nominal runs
 - 3 injected fault runs
- 3 of the IMU single axis fail to zero cases did not perform well due to instabilities and incorrect fault injection
- 5 runs were eliminated due to instabilities

Improvement Ideas

- Gimbal faults reliably detected only when gimbals were commanded to move
- Addition of motor voltage or current data could be incorporated into the model to detect some faults even when the gimbals were not moving
- The addition of such signals could potentially improve fault identification performance as well
- Improve tuning to decrease MD rates
- Increase sensitivity to IMU faults

Õ

Conclusions

- Correctly diagnosed injected CMG and IMU faults
- Cases of transient hall sensor latching were also detected
- Detected real gimbal hardware faults
- MONSID has shown its ability to detect and identify multiple simultaneously occurring faults

Acknowledgments

This work was sponsored in part by a Phase II SBIR contract with the Air Force Research Laboratory at Kirtland Air Force Base